The zinc-sensing mechanism of mouse MTF-1 involves linker peptides between the zinc fingers.
نویسندگان
چکیده
Mouse metal response element-binding transcription factor-1 (MTF-1) regulates the transcription of genes in response to a variety of stimuli, including exposure to zinc or cadmium, hypoxia, and oxidative stress. Each of these stresses may increase labile cellular zinc, leading to nuclear translocation, DNA binding, and transcriptional activation of metallothionein genes (MT genes) by MTF-1. Several lines of evidence suggest that the highly conserved six-zinc finger DNA-binding domain of MTF-1 also functions as a zinc-sensing domain. In this study, we investigated the potential role of the peptide linkers connecting the four N-terminal zinc fingers of MTF-1 in their zinc-sensing function. Each of these three linkers is unique, completely conserved among all known vertebrate MTF-1 orthologs, and different from the canonical Cys2His2 zinc finger TGEKP linker sequence. Replacing the RGEYT linker between zinc fingers 1 and 2 with TGEKP abolished the zinc-sensing function of MTF-1, resulting in constitutive DNA binding, nuclear translocation, and transcriptional activation of the MT-I gene. In contrast, swapping the TKEKP linker between fingers 2 and 3 with TGEKP had little effect on the metal-sensing functions of MTF-1, whereas swapping the canonical linker for the shorter TGKT linker between fingers 3 and 4 rendered MTF-1 less sensitive to zinc-dependent activation both in vivo and in vitro. These observations suggest a mechanism by which physiological concentrations of accessible cellular zinc affect MTF-1 activity. Zinc may modulate highly specific, linker-mediated zinc finger interactions in MTF-1, thus affecting its zinc- and DNA-binding activities, resulting in translocation to the nucleus and binding to the MT-I gene promoter.
منابع مشابه
Balance between metallothionein and metal response element binding transcription factor 1 is mediated by zinc ions (review).
Metal ion homeostasis and heavy metal detoxification systems are regulated by certain genes associated with metal ion transport. Metallothionein (MT) and metal response element binding transcription factor 1 (MTF‑1) are important regulatory proteins involved in the mediation of intracellular metal ion balance. Differences in the zinc‑binding affinities of the zinc fingers of MTF‑1 and the α‑ an...
متن کاملMammalian metal response element-binding transcription factor-1 functions as a zinc sensor in yeast, but not as a sensor of cadmium or oxidative stress.
The zinc finger protein, metal response element-binding transcription factor-1 (MTF-1) regulates the expression of genes in response to metal ions and oxidative stress. The precise mechanisms by which this occurs are not understood. To further examine this problem, mouse MTF-1 was expressed in Saccharomyces cerevisiae and tested for the ability to activate metal response element-driven reporter...
متن کاملCloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1.
Metallothioneins (MTs) are small cysteine-rich proteins that bind heavy metal ions such as zinc, cadmium and copper with high affinity, and have been functionally implicated in heavy metal detoxification and radical scavenging. Transcription of metallothioneins genes is induced by exposure of cells to heavy metals. This induction is mediated by metal-responsive promoter elements (MREs). We have...
متن کاملFunctional domains of the heavy metal-responsive transcription regulator MTF-1.
Metallothioneins (MTs) constitute a class of low molecular weight, cysteine-rich, metal binding proteins which are regulated at the level of gene transcription in response to heavy metals and other adverse treatments. We have previously cloned a zinc finger factor (MTF-1) that binds specifically to heavy metal-responsive DNA sequence elements in metallothionein promoters and shown that this fac...
متن کاملRatiometric pulsed alkylation/mass spectrometry of the cysteine pairs in individual zinc fingers of MRE-binding transcription factor-1 (MTF-1) as a probe of zinc chelate stability.
Metal-response element (MRE)-binding transcription factor-1 (MTF-1) is a zinc-regulated transcriptional activator of metallothionein (MT) genes in mammalian cells. The MRE-binding domain of MTF-1 (MTF-zf) has six canonical Cys(2)-His(2) zinc finger domains that are distinguished on the basis of their apparent affinities for zinc and their specific roles in MRE-binding. In this paper, pulsed alk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 26 15 شماره
صفحات -
تاریخ انتشار 2006